圆周率的由来
的有关信息介绍如下:圆周率在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆携腊猜周率的研究成果。 亚洲:中国 : 魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆术”),求得π的近似局誉值3.1416。 圆周率汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。 公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。印度 : 约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。 婆罗门笈多采用另一套方法,推论出圆周率等于10的平方根。欧洲 : 斐波那契算出圆周率约为3.1418。 韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537 他还是第一个以无限乘积叙述圆周率的人。 鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。 华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9...... 欧拉发现的e的iπ次方加1等于0,成为证明π是超越数的重要依据。 之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。π与电脑的关系 在1949年,美国制造的世上首部电脑-ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等于平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随着美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。 在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收敛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后,不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后51,000,000,000个位。 为什么要继续计算π 其实,即使是要求最高、最准确的计算,也用不着这么多的小数位,那么,为什么人们还要不断地努力去计算圆周率呢? 这是因为,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是由研究圆周率的推动,从而发展出来的。圆周率的发展 年代 求证者 内容 古代 中国周髀算经 周三径一; 圆周率=3 西方圣经 元前三世 阿基米德(希腊) 1. 圆面积等于分别以半圆周和径为边长的矩形 的面积 2.圆面积与以直径为长的正方形面积之比为11:14 3. 圆的周长与直径之比小与31/7 ,大于310/71 三世纪 刘徽 中国 用割圆术得圆周率=3.1416称为“徽率” 五世纪 祖冲之 中国 1. 3.1415926<圆周率<3.1415927 2. 约率 = 22/辩型7 3. 密率 = 355/113 1596年 鲁道尔夫 荷兰 正确计萛得到小数点后35位数字 1579年 韦达 法国“韦达公式”以级数无限项乘积表示 1600年 威廉.奥托兰特 英国 用?/σ表示圆周率 π是希腊文圆周的第一个字母 σ是希腊文直径的第一个字母 1655年 渥里斯 英国 开创利用无穷级数求π的先例 1706年 马淇 英国“马淇公式”计算出的100 位数字 1706年 琼斯 英国 首先用π表示圆周率 1789年 乔治.威加 英国 准确计萛?至126 位 1841年 鲁德福特 英国 准确计萛?至152 位 1847年 克劳森 英国 准确计萛?至248 位 1873年 威廉.谢克斯 英国 准确计萛?至527 位 1948年 费格森和雷恩奇 英国 美国 准确计算?至808 位 1949年 赖脱威逊 美国 用计算机将?计算到2034位 现代 用电子计算机可将?计算到亿位