您的位置首页百科知识

万有引力常数是多少?写出具体数

万有引力常数是多少?写出具体数

的有关信息介绍如下:

引力常量,是物理学术语,目前公认的结果是卡文迪许测定的G值为6.754×10-11N·m²/kg²。

目历培前最嫌如新的推荐的标准为G=6.67408×10-11N·m²/kg²,通常取G=6.67×10-11N·m²/kg²,如果使用厘米克秒制则G=6.67×10-8 dyn·cm²/g²。

万有引力常量G的准确值计算公式为:

G= rV^2/M

其中,M是母星质量,V为行星或卫星的线速度,r为行星或卫星的轨道半径。

提出时间:18——19世纪。

应用学科:物理学。

测出者:亨利·卡文迪许。

万有引力常数是多少?写出具体数

测量过程:

应该强调的是,在牛顿得出行星对太阳的引力关系时,已经渗入了假定因素。

卡文迪许(Henry Cavendish)在对一些物体间的引力进行测量并算出引力常量G后,又测量了多种物体间的引力,所得结果与利用引力常量G按万有引力定律计算所得的结果相同。

所以,引力常量的普适性成为万有引力定律正确的见证。

这是一个卡文迪许扭秤的模型。这个扭秤的主要部分是这样一个T字形轻而结实的框架,把这个T形架倒挂在一根石英丝下。

若在T形架肢者唯的两端施加两个大小相等、方向相反的力,石英丝就会扭转一个角度。力越大,扭转的角度也越大。

反过来,如果测出T形架转过的角度,也就可以测出T形架两端所受力的大小。先在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球,大小两个球间的距离是可以较容易测定的。

根据万有引力定律,大球会对小球产生引力,T形架会随之扭转,只要测出其扭转的角度,就可以测出引力的大小。

当然由于引力很小,这个扭转的角度会很小。

卡文迪许在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的移动。

这样,就起到一个化小为大的效果,通过测定光斑的移动,测定了T形架在放置大球前后扭转的角度,从而测定了此时大球对小球的引力。

卡文迪许用此扭秤验证了牛顿万有引力定律,并测定出引力常量G的数值。这个数值与近代用更加科学的方法测定的数值是非常接近的。

参考资料来源:百度百科-引力常量