等差数列求和公式有几种写法?
的有关信息介绍如下:Sn=n(a1+an)/2
Sn=na1+n(n-1)d/2=dn^2/2+(a1-d/2)n
通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
扩展资料:
等差数列的公式:
公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数);
项数=(末项-首项来)春脊÷公差亩森穗+1;
末项=首项+迅卜(项数-1)×公差;
前n项的和Sn=首项×n+项数(项数-1)公差/2;
第n项的值an=首项+(项数-1)×公差;
等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列;
等差数列的和=(首项+末项)×项数÷2;
an=am+(n-m)d,若已知某一项am,可列出与d有关的式子求解an。