您的位置首页百科词条

定理有哪些

定理有哪些

的有关信息介绍如下:

定理有哪些

共3个含义定理(英语:Theorem)是经过受逻辑限制的证明为真的陈述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些是正迅,某些是,就不能算是定理)。猜想是相信为真但未被证明的数学叙述,或者叫做命题,当它经过证明后便是定理。猜想是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述可以不经过成为猜想的过程,成为定理。 如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。 在命题逻辑,所有已证明的叙述都称为定理。各种数学叙述(按重要性来排列)引理(又称辅助定理,补理)-某个定理的证明的一部分的叙述。它并非主要的结果。引理的证明有时还比定理长,例如舒尔引理。推论-一个从定理随之而即时出现的叙述。若命题B可以很快、简单地推导出命题A,命题A为命题B的推论。命题定理数学原理结构定理一般都有许多条件。然后有结论——一个在条件下成立的数学叙述。通常写作“若条件,则结论”。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。逆定理若存在某叙述为,其乎察逆叙述就是。逆叙述成立的情况是,否则通常都是倒果为因,不合常理。若果叙述是定理,其成立的逆叙述就是逆定理。若某叙述和其逆叙述都为真,条件必要且充足。若某叙述为真岁清茄,其逆叙述为假,条件充足。若某叙述为假,其逆叙述为真,条件必要。逻辑中的定理逻辑语言中的定理表示的是一个公式集合,并且该公式集合中的每一个公式都代表着知识的一个片段,由此我们可以给定理一个更准确的表达(这里所说的定理