(1)不等式$2|x|+|x-1|<2$的解集是
的有关信息介绍如下:(1)由不等式$2|x|+|x-1|<2$可得
$①\left\{\begin{array}{l}{x<0} \\ {-3 x+1<2}\end{array}\right.$,或$②\left\{\begin{array}{l}{0 \leqslant x<1} \\ {x+1<2}\end{array}\right.$,或$③\left\{\begin{array}{l}{x \geqslant 1} \\ {3 x-1<2}\end{array}\right.$
解$①$得$-\frac{1}{3}故不等式的解集为$\left(-\frac{1}{3},1\right)$故答案为:$\left(-\frac{1}{3},1\right)$(2)点$\left(2\sqrt{2},\frac{\pi}{4}\right)$的直角坐标为$(2,2)$,圆$\rho=4\sin\theta$即$\rho^2=4\rho\sin\theta$转化可得$x^2+(y-2)^2=4$,表示以$(0,2)$为圆心、以$2$为半径的圆由题意可得,圆的切线斜率不存在,故切线方程为$x=2$,化为极坐标方程为$\rho\cos\theta=2$故答案为:$\rho\cos\theta=2$
故不等式的解集为$\left(-\frac{1}{3},1\right)$
故答案为:$\left(-\frac{1}{3},1\right)$
(2)点$\left(2\sqrt{2},\frac{\pi}{4}\right)$的直角坐标为$(2,2)$,圆$\rho=4\sin\theta$即$\rho^2=4\rho\sin\theta$
转化可得$x^2+(y-2)^2=4$,表示以$(0,2)$为圆心、以$2$为半径的圆
由题意可得,圆的切线斜率不存在,故切线方程为$x=2$,化为极坐标方程为$\rho\cos\theta=2$
故答案为:$\rho\cos\theta=2$