您的位置首页百科词条

张角定理的证明

张角定理的证明

的有关信息介绍如下:

证法1:

设∠1=∠BAD,∠2=∠CAD

由分角定理,

S△ABD/S△ABC=BD/BC=(AD/AC)*(sin∠1/sin∠BAC)

→ (BD/BC)*(sin∠BAC/AD)=sin∠1/AC (1.1)

S△ACD/S△ABC=CD/BC=(AD/AB)*(sin∠2/sin∠BAC)

→ (CD/BC)*(sin∠BAC/AD)=sin∠2/AB (1.2)

(1.1)式+(1.2)式即得 sin∠1/AC+sin∠2/AB=sin∠BAC/AD。

证法尘消2:

由正弦定理,

AD/sinB=BD/sin∠1, (2.1)

AD/sinC=CD/sin∠2, (2.2)

AB/sinC=BC/sin(∠1+∠2), (2.3)

AC/sinB=BC/sin(∠1+∠2); (2.4)

那么由(2.1),(2.2),BD=ADsin∠1/sinB,CD=ADsin∠2/sinC,从带启而

BC=BD+CD=AD(sin∠1/sinB+sin∠2/sinC) (2.5)

由(2.3),(2.4),知sin∠1/AC=sin∠1sin(∠1+∠2) / BCsinB,sin∠2/AB=sin∠2sin(∠1+∠2) / BCsinC。

将以上两式相加,并将(2.5)代入即可。

证法3:

由面积蠢兄如和得:

0.5sin∠BAD*BA*AD+0.5sin∠DAC*DA*AC=0.5sin∠BAC*BA*AC

张角定理的证明