余切函数的余切函数的图像
的有关信息介绍如下:余拆皮切函数的图像如下所示:
任意角终边上除顶点外的任一点的横坐标除以该点的非零纵坐标,角的顶点与平面直角坐标系的原点重合,而该角的始边宽裂则与正x轴重合。简单点理解:直角三角形任意一锐角的邻边和对边的比,叫做该锐角的余切。
余切表示用“cot+角度”,如:30°的余切表示为cot 30°;角A的余切表示为cot A。旧时用ctg A来表示余切,和cot A是一样的。假设∠A的对边为a、邻边为b,那么cot A= b/a(即邻边比对边)。
扩展资料:
余切的发展历史:
叙利亚天文学家、数学家阿尔巴坦尼(850-929)于920年左右,制成了自旅巧差0到90度相隔1度的余切表。
14世纪中叶,成吉思汗的后裔,中亚细亚的阿鲁伯(1393--1449)组织了大规模的天文观测和数学用表的计算,他的正弦表精确到小数9位,他还制作了30到45度之间相隔为1",45到90度的相隔为5"7'的正切表。
英国数学家、坎特伯雷大主教布拉瓦丁(1290-1349)首先把正切、余切引入他的三角计算之中。