正态分布的期望和方差怎么求
的有关信息介绍如下:设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2360问答)]
其实就是均值是u,定树群报度空方差是t^2。
于是:∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t(*)
积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域。
(1)求均值
对(*)式两边对u求导:
∫{e^[-(x-u)^2/2(t^2)]*[2(u-密块局区供面容脚田弦死x)/2(t^2)]dx=0
约去常数,再两边同乘以1/(√2π)t得:
∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*州决代茶甲微石活类当(u-x)dx=0
把(u-x)右密集过年果拆开,再移项:
∫x*[1察乐检那节图选/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx
也就是
∫x*f(x)dx=u*1=u
这样就正好凑出了均值的定义式,证明了均值就是u。
(2)方差
过程和求均值是差不多的,我就稍微略写一点了。
对(*)式两边对t求导:
∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π
移项:
∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2
也就是
∫(x-u)^2*f(x)dx=t^2
正好凑出了方差的定义式,从而结论得证。
扩展资料:
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。
在统计描述中,方差用来计算每一个变量话朝待行(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。
为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。
对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随修信机变量X方差计算公式:杂侵玉压掉把器只怎著你D(X)=(x-μ)^2f(x)dx
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)
若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
参考资料来源:
参考资料来源: